|
|
|
|
|
|
Кружок 8 класса
Руководитель Степан Львович Кузнецов 2012/2013 учебный год
Занятие 10 (17 ноября 2012 года)
- 1.
-
а) При каком положении точки C на границе прямоугольника площадь треугольника ABC будет наибольшей?
б) Дана окружность, проходящая через точки A и B. При каком положении точки C на этой окружности площадь треугольника ABC будет наибольшей?
- 2.
-
Прямоугольник ABCD площади 1 сложили по прямой так, что точка C совпала с A. Докажите, что площадь получившегося пятиугольника меньше 3/4.
- 3.
-
Стороны квадрата длины 3 разбиты на отрезки длины 1 и точки разбиения соединены отрезками, как показано на рисунке. Найдите площадь закрашенной фигурки.
- 4.
-
Все целые числа произвольным образом разбиты на две группы. Доказать, что хотя бы в одной из групп найдутся три числа, одно из которых есть среднее арифметическое двух других.
- 5.
-
Число a + 1/a — целое. Докажите, что число a² + 1/a² также целое.
Дополнительные задачи
- 6.
-
В обращении есть монеты достоинством в 1, 2, 5, 10, 20, 50 копеек и 1 рубль. Известно, что k монетами можно набрать m копеек. Докажите, что m монетами можно набрать k рублей.
- 7.
-
Костя пытался нарисовать на клетчатой бумаге квадрат площади x с вершинами в узлах клеток, а Серёже захотелось нарисовать квадрат площади 1/x.
Косте удалось нарисовать свой квадрат. Докажите, что и Серёжа сможет исполнить своё желание. (Вершины Серёжиного квадрата не обязаны лежать в узлах клеток. Имеется только один инструмент — линейка, разрешается отмечать точку пересечения двух прямых, отмечать узел cетки и проводить прямую через любые две отмеченные точки.)
|