МАЛЫЙ МЕХМАТ МГУ

Кружок 5 класса

Руководитель Дмитрий Александрович Коробицын
2010/2011 учебный год

Версия для печати

Занятие 1 (25.09.2010). Плюс-минус один

1.
Зайцы нашли в лесу бревно длиной 6 м. Чтобы отнести домой, они распилили его на части длиной по 1 метру. Сколько они сделали распилов?
Решение. После каждого распила одна часть распадается на две, т.е. количество частей увеличивается на 1. В начале была одна часть (целое бревно), в итоге стало 6. Значит, было сделано 6 − 1 = 5 распилов.
Ответ. 5 распилов.
2.
Из книги выпал кусок, у первой страницы которого номер 35, а у последней — 74. Сколько страниц выпало?
Решение. Рассмотрим страницы с 1-й по 74-ю. Из них в выпавший кусок не входят с 1-й по 34-ю. Значит, выпало 74 − 34 = 40 страниц.
Ответ. 40 страниц.
3.
Теперь у зайцев уже несколько бревен. Они распили все бревна, сделав 20 распилов, и получили 27 чурбачков. Сколько бревен было у зайцев?
Решение. Так как после каждого распила количество чурбачков увеличивается на 1, то значит, после 20 распилов их количество также увеличилось на 20. Тогда изначально у зайцев было 27 − 20 = 7 брёвен.
Ответ. 7 брёвен.
4.
Сколько всего существует двузначных чисел? А трёхзначных?
Решение. Двузначные числа — это 10, 11, 12, ..., 99. Всего их 99 − 9 = 90.
Аналогично трёхзначных чисел 999 − 99 = 900.
Ответ. 90, 900.
5.
Улитке надо подняться на столб высотой 10 м. Каждый день она поднимается на 4 м, а каждую ночь сползает на 3 м. Когда улитка доползёт до цели, если она стартовала в понедельник утром?
Решение. За сутки (день и ночь) улитка будет продвигаться по столбу на 1 м (подниматься на 4 м днём и опускаться на 3 м ночью). В итоге после 6 суток она окажется на высоте 6 м и за следующий день доползёт до верха.
Ответ. Вечером в воскресенье.
6.
Главное здание МГУ состоит из нескольких секторов. Этажи в разных секторах отличаются по высоте. Из-за этого, например, получается, что переходы с 13 этажа сектора А ведут на 19 этаж секторов Б и В. Как соотносятся по высоте этажи в этих секторах?
Решение. Уровень пола 13 этажа сектора А совпадает с уровнем пола 19 этажа секторов Б и В. Значит, высота первых 18 этажей сектора А равна высоте первых 12 этажей в Б и В. Тогда отношение равно 18:12 или 2:3.
7.
Сколько раз за сутки на часах минутная стрелка обгонит часовую?
Решение. За первые 12 часов минутная стрелка обгонит часовую 10 раз: каждый час, кроме первого и последнего. В 0 ч и 12 ч стрелки совместятся. Так как мы рассматриваем промежуток времени в 24 часа, то стрелки пойдут дальше. Их совпадение в 12 ч дня тоже нужно считать обгоном.
За следующие 12 часов произойдёт ещё 10 обгонов, а всего их будет 10 + 1 + 10 = 21.
Ответ. 21 раз.

Дополнительные задачи

8.
Для нумерации страниц в книге потребовалось 2322 цифры. Сколько страниц в этой книге?
Решение. Всего есть 9 однозначных и 90 двузначных номеров. На них приходится 9 + 2·90 = 189 цифр. Остаётся 2322 − 189 = 2133 цифр. Они образуют 2133⁄3 = 711 трёхзначных последовательных номеров. Значит, всего страниц 99 + 711 = 810.
Ответ. 810 страниц.
9.
В ряд выписаны все натуральные числа:
1234567891011121314151617181920...
Какая цифра стоит на 2010 месте?
Решение. Посмотрим какому числу будет принадлежать эта цифра. Первые 9 цифр относятся к однозначным числам, следующие 2·90 = 180 к двузначным. Остаётся ещё 2010 − 189 = 1821 цифра. Из них состоят 1821⁄3 = 607 трёхзначных чисел. Последнее из них будет равно 99 + 607 = 706. Значит, 2010-я цифра будет 6.
10.
Серёжа купил тетрадь объемом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Данил вырвал из этой тетради какие-то 50 страниц и сложил все 50 чисел, которые на них написаны. Докажите, что у него не могла получиться сумма 2010.
Решение. Вырванные страницы пронумерованы 50 последовательными числами. Среди них 25 чётных и 25 нечётных. Но сумма, содержащая нечётное количество нечётных слагаемых, нечётна, а значит, 2010 быть равна не может.

Вы видите ошибку? Выделите её и нажмите Ctrl+Enter! Rambler's Top100
liveinternet.ru
Apache
PHP
HTML 4.01
CSS