МАЛЫЙ МЕХМАТ МГУ | ||
Кружок 7 классаРуководитель Сергей Александрович Дориченко
1996/1997 учебный год Занятие 13 (15 февраля 1997)Задача 13.1. За какое кратчайшее время можно поджарить с двух сторон 3 ломтика хлеба, если на сковороде умещаются лишь 2 ломтика, а на поджаривание ломтика с одной стороны уходит минута? (Время на перевёртывание и перекладывание ломтиков можно не учитывать). Задача 13.2. Дома Винни-Пуха, Пятачка, Иа и Совы лежат в вершинах выпуклого четырехугольника. Где нужно строить колодец, чтобы сумма расстояний от него до домов была наименьшей? Задача 13.3. Стрелка на часах показывает 1 ч. Юра и Оля по очереди сдвигают её вперёд на 2 или 3 ч. Выигрывает тот, кто поставит стрелку на 12 ч. Кто выигрывает при правильной игре? Задача 13.4. Два посёлка А и В расположены
Задача 13.5. На доске написали в строку 25 чисел "-1". Каждым ходом какие-то два соседних числа заменяли на "1", если они имеют один и тот же знак, и на "-1", если они имеют разные знаки. После нескольких таких ходов на доске осталось одно число. Могло ли оно быть 1? Дополнительные задачиЗадача 13.6. За круглым столом сидят 1995 представителей четырёх племён: люди, гномы, эльфы и гоблины. Известно, что люди никогда не сидят рядом с гоблинами, а эльфы - рядом с гномами. Докажите, что какие-то два представителя одного и того же племени сидят рядом. Задача 13.7. В клетках шахматной доски расставлены натуральные числа от 1 до 64, причём каждое число встречается ровно один раз. Докажите, что найдутся две соседние (по стороне) клетки, числа в которых отличаются не менее чем на 5. |