|
|
|
|
|
|
Кружок 6 класса
Руководитель Степан Львович Кузнецов 2014/2015 учебный год
Группа В (старший преподаватель А. С. Воропаев)
Математическая абака
Числа
- 10.
-
Расставьте знаки действий и скобки, где это необходимо, чтобы равенство стало верным: 2015 = 100.
- 20.
-
Если от трехзначного числа отнять 7, оно разделится на 7; если отнять 8, разделится на 8; если отнять 9 — разделится на 9. Найдите это число.
Ответ
- 30.
-
Какое наибольшее число пятниц может быть в году?
Ответ
- 40.
-
Придумайте три разные правильные несократимые дроби, сумма которых — целое число, такие, что если каждую из этих дробей «перевернуть» (т.е. заменить на обратную), то сумма полученных дробей тоже будет целым числом.
- 50.
-
Расставьте арифметические операции и скобки так, чтобы получилось 24: 1 3 4 6. (Склеивать цифры в числа нельзя, переставлять их местами можно.)
- 60.
-
Вычислите 1×3 − 2!×4 + 3!×5 − … − 2012!×2014 + 2013!.
Ответ
Логика
- 10.
-
А говорит: «Или я лжец, или Б — рыцарь». Кто есть кто?
Ответ
- 20.
-
Сколько рыцарей может быть за круглым столом, если каждый из 10 сидящих произносит фразу: «Мои соседи — лжецы».
Ответ
- 30.
-
Путник встретил троих островитян и спросил каждого из них: «Сколько рыцарей среди твоих спутников?». Первый ответил: «Ни одного». Второй сказал: «Один». Что сказал третий?
Ответ
- 40.
-
В дебатах участвовали 9 кандидатов. Каждый заявил: «Кандидат, чей номер равен последней цифре квадрата моего номера — рыцарь». Выяснилось, что среди них были рыцари, но их было не более трех. Кто из них кто?
Ответ
Ответ.
Пятый рыцарь, остальные лжецы.
- 50.
-
В шеренгу выстроились 100 человек. Первый сказал: «Количество рыцарей среди нас делитель числа 1», второй сказал: «Количество рыцарей среди нас делитель числа 2» и т.д. Сколько в шеренге рыцарей?
Ответ
- 60.
-
32 кошелька лежат в ряд, в каждом по 100 монет. Из одного кошелька переложили по 1 монете в каждый из кошельков справа от него. Разрешается узнать суммарное число монет в любом наборе кошельков (сделать это можно только один раз). На какие кошельки надо указать, чтобы узнать, какой из кошельков "облегчили"?
Двумя способами
- 10.
-
Митя соединил проводами несколько компьютеров. От одного компьютера отходит 4 провода, от трех компьютеров по 3 провода, от четырех — по 2 провода и от одного компьютера — один провод. Сколько всего проводов протянул Митя?
Ответ
- 20.
-
В прямоугольной таблице 8 столбцов, сумма в каждом столбце — по 10, а в каждой строке — по 20. Сколько в таблице строк?
Ответ
- 30.
-
У пиратов есть треуголки, у каждой на одном углу висит одна кисточка, на другом — две и на третьем — три. Однажды один из пиратов, сложив все треуголки стопкой, насчитал с каждого угла по 25 кисточек. Какое наименьшее количество кисточек было потеряно?
Ответ
- 40.
-
В стране Котовасии живут коты и васы. Каждый кот дружит с шестью котами и девятью васами. Каждый вас дружит с десятью котами и семью васами. Найдите отношение котов к васам.
Ответ
- 50.
-
Аня, Боря и Вася играют в шахматы. Каждый сыграл по 10 партий. Сколько партий Аня могла сыграть с Борей? (Надо найти все варианты.)
Ответ
- 60.
-
Алексей Сергеевич сказал, что каждой из 26 диагоналей шахматной доски (угловые клетки не считаются)
находится равное число фигур. Сколько их могло быть?
Ответ
|