МАЛЫЙ МЕХМАТ МГУ

Кружок 9-11 классов

Руководители А. С. Воропаев, П. С. Дергач, Ф. И. Мамедова и Ю. А. Цимбалов
2011/2012 учебный год

Игры

1.
Два гроссмейстера по очереди ставят на шахматную доску ладьи (за один ход — одну ладью) так, чтобы они не били друг друга. Тот, кто не сможет поставить ладью, проигрывает. Кто выигрывает при правильной игре — первый или второй гроссмейстер?
2.
Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода.
3.
Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.
4.
У ромашки а) 12 лепестков; б) 11 лепестков. За ход разрешается сорвать либо один лепесток, либо два рядом растущих лепестка. Проигрывает игрок, который не сможет сделать ход. Как действовать второму игроку, чтобы выиграть независимо от ходов первого игрока?
5.
Числа от 1 до 20 выписаны в строчку. Игроки по очереди расставляют между ними плюсы и минусы. После того, как все места заполнены, подсчитывается результат. Если он четен, то выигрывает первый игрок, если нечетен, то второй.
6.
На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными - единицу. Если последняя оставшаяся на доске цифра - единица, то выиграл первый игрок, если двойка — то второй.
7.
Двое играют в следующую игру. Каждый игрок по очереди вычеркивает 9 чисел (по своему выбору) из последовательности 1, 2, ..., 100, 101. После одиннадцати таких вычеркиваний останутся 2 числа. Первому игроку присуждается столько очков, какова разница между этими оставшимися числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55 очков, как бы ни играл второй.
8.
На клетчатой бумаге нарисован прямоугольник 5×9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре?
9.
Игровое поле представляет собой горизонтальную полоску размером 1×100 клеток. В самой левой клетке стоит фишка. двое по очереди двигают фишку вправо, причем за один ход разрешается сдвинуть фишку вправо на расстояние от 1 до 10 клеток. Проигрывает тот, кто не может сделать ход (т. е. перед его ходом фишка находится в самой правой клетке). Кто выиграет при правильной игре?
10.
На доске написано число 1. Два игрока по очереди прибавляют любое число от 1 до 5 к числу на доске и записывают вместо него сумму. Выигрывает игрок, который первый запишет на доске число тридцать. Укажите выигрышную стратегию для второго игрока.