|
|
|
|
|
|
Кружок 5 класса
Руководитель Блинков Александр Давидович 2005/2006 учебный год
Графы и обходы графов (10.11 и 12.11)
- 1.
-
а) Расположите на плоскости 6 точек и соедините их непересекающимися линиями так, чтобы из каждой точки выходили 4 линии.
б) проведите 6 прямых и отметьте на них 7 точек так, чтобы на каждой прямой было ровно три из отмеченных точек.
- 2.
-
а) Художник-авангардист нарисовал картину “Контур квадрата и его диагональ”. Мог ли он нарисовать свою картину, не отрывая карандаша от бумаги и не проводя никакую линию дважды?
б) А если его картина называлась “Контур квадрата и его диагонали”?
- 3.
-
а) Зачеркните 9 точек, изображенных на левом рисунке, четырьмя отрезками, не отрывая карандаша от бумаги и не проводя никакую линию дважды.
б) 13 точек, изображенных на правом рисунке, пятью отрезками, не отрывая карандаша от бумаги и не проводя никакую линию дважды.
- 4.
-
Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?
- 5.
-
а) 20 команд сыграли турнир по олимпийской системе (встречаются две команды, победитель играет дальше, проигравший выбывает). Сколько всего было сыграно матчей?
б) а если турнир проходил по круговой системе в один круг? (каждая команда играет с каждой один раз).
- 6.
-
Дима, приехав из Врунляндии, рассказал, что там есть несколько озер, соединенных между собой реками. Из каждого озера вытекают три реки, и в каждое озеро впадают четыре реки. Докажите, что он ошибается.
Дополнительные задачи
- 7.
-
В углах шахматной доски 3*3 стоят 4 коня: 2 белых и 2 черных. Можно ли за несколько ходов поставить коней так, чтобы во всех соседних углах стояли кони разного цвета.
- 8.
-
Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы - квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата - тоже улицы).
- 9.
-
В королевстве 16 городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в каждый, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более 5 дорог. а) Докажите, что это возможно. б) Докажите, что если в формулировке заменить число 5 на число 4, то желание короля станет неосуществимым.
|