МАЛЫЙ МЕХМАТ МГУ

Кружок 8 класса

Руководитель Евгений Александрович Асташов
2014/2015 учебный год

Занятие 18. ММО: геометрия

1.
Прямоугольный лист бумаги согнули, совместив вершину с серединой противоположной короткой стороны (см. рис.). Оказалось, что треугольники I и II равны. Найдите длинную сторону листа, если короткая равна 8. рисунок к задаче 1
2.
На клетчатой бумаге нарисован прямоугольник шириной 200 и высотой 100 клеток. Его закрашивают по клеткам, начав с левой верхней и идя по спирали (дойдя до края или уже закрашенной части, поворачивают направо). Какая клетка будет закрашена последней? (Укажите номер её строки и столбца. Например, нижняя правая клетка стоит в 100-й строке и 200-м столбце.)
3.
На гипотенузе AB прямоугольного треугольника ABC выбрана точка K, для которой CK = BC. Отрезок CK пересекает биссектрису AL в её середине. Найдите углы треугольника ABC.
4.
На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что KM || AC. Отрезки AM и KC пересекаются в точке O. Известно, что AK = AO и KM = MC. Докажите, что AM = KB.
5.
Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?
6
Длины оснований трапеции равны m см и n см (m и n — натуральные числа, mn). Докажите, что трапецию можно разрезать на равные треугольники.
7
Отметьте на доске 8 × 8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
8
Наташа сделала из листа клетчатой бумаги календарь на январь 2006 года (см. рис.) и заметила, что центры клеток 10, 20 и 30 января образуют равнобедренный прямоугольный треугольник. Наташа предположила, что это будет верно и в любом другом году, за исключением тех лет, когда центры клеток 10, 20 и 30 лежат на одной прямой. Права ли Наташа? рисунок к задаче 8
9
Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.
10
В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наибольший угол треугольника имел наименьшую величину?