|
|
|
|
|
|
Кружок 8 класса
Руководители Дмитрий Александрович Коробицын и Дмитрий Викторович Шелаев 2013/2014 учебный год
Вступительная работа (21 сентября 2013 г.)
- 1.
-
В классе 30 человек. Может ли быть так, что 9 из них имеют по 3 друга, 11 — по 4 друга, а 10 — по 5 друзей в этом классе?
- 2.
-
При каких значениях параметра a уравнение x² + 2x + a = 0 имеет два корня одного знака?
- 3.
-
В треугольнике ABC из вершины C проведены биссектрисы внутреннего и внешнего углов. Первая биссектриса образует со стороной AB угол, равный 40°. Какой угол образует с продолжением стороны AB вторая биссектриса?
- 4.
-
Каждая из сторон выпуклого шестиугольника имеет длину больше 1. Всегда ли в нем найдется диагональ длины больше 2?
- 5.
-
Олег поспорил с Гошей на подзатыльник, что он сможет отгадать любое задуманное им число от 1 до 1000 не более чем за 10 вопросов вида: «Это число больше/меньше такого-то?», причем Гоша хочет отвечать на них только «да» или «нет». Кто выиграет спор?
- 6.
-
Найдите наибольший общий делитель всех девятизначных чисел, состоящих из разных цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 во всех возможных порядках. (то есть НОД чисел 123456789, 154723986, 543786921 и т. д.)
- 7.
-
У правильного 5000-угольника покрашено 2001 вершина. Докажите, что найдутся три покрашенные вершины, лежащие в вершинах равнобедренного треугольника.
|