|
Кружок 5 класса
Руководитель Блинков Юрий Александрович 2007/2008 учебный год
Математическая карусель – 2 (9.12.06 и 12.12.06)
- 1.
-
Кот в Сапогах поймал четырех щук и еще половину улова. Сколько щук поймал Кот в Сапогах?
- 2.
-
Во время прогулки по лесу Винни-Пух каждые 40 метров находил гриб. Какой путь он прошёл от первого гриба до последнего, если всего он нашёл 15 грибов?
- 3.
-
В зоомагазине продают больших и маленьких птиц. Большая птица стоит вдвое дороже маленькой. Одна дама купила 5 больших птиц и 3 маленьких, а другая — 5 маленьких и 3 больших. При этом первая дама заплатила на 20 рублей больше. Сколько стоит каждая птица?
- 4.
-
Когда "послезавтра" станет "вчера", то "сегодня" будет так же далеко от воскресенья, как тот день, который был "сегодня", когда "вчера" было "завтра". Как вы думаете, какой сегодня день недели?
- 5.
-
Девочка вместо каждой буквы своего имени подставила порядковый номер этой буквы в русском алфавите, у неё получилось число 2011533. Как звали девочку?
- 6.
-
Несколько гномов, навьючив свою поклажу на пони, отправились в дальний путь. Их заметили тролли, которые насчитали в караване 36 ног и 15 голов. Сколько было гномов, и сколько пони?
- 7.
-
В Таниной квартире имеется 8 розеток, 21 тройник и неограниченный запас утюгов. Какое наибольшее число утюгов Таня может включить в сеть одновременно?
- 8.
-
Двое часов начали и закончили бить одновременно. Первые бьют через каждые 2 с, вторые — через каждые 3 с. Всего было сделано 13 ударов (совпавшие удары воспринимались за один). Сколько времени прошло между первым и последним ударами?
- 9.
-
В комнате стоят несколько четырехногих стульев и трехногих табуреток. Когда на всех стульях и табуретках сидит по человеку, в комнате всего 39 ног. Сколько в комнате стульев и сколько табуреток?
- 10.
-
Сумма двух натуральных чисел равна 1244. Если в конце первого приписать 3, а в конце второго отбросить 2, то числа окажутся равными. Найти эти числа.
- 11.
-
В корзине лежат 30 рыжиков и груздей. Среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов имеется хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине?
- 12.
-
Сколько человек нужно пригласить на праздничный вечер, чтобы по крайней мере у десятерых из них дни рождения были в одном и том же месяце?
- 13.
-
Камень весит 5 кг, еще треть камня и еще половину камня. Сколько весит камень?
- 14.
-
Портос, Атос и Д’Артаньян вместе весят 290 кг, Портос, Арамис и Д’Артаньян – 270 кг, Портос, Атос и Арамис – 280 кг, Д’Артаньян,Арамис и Атос – 240 кг. Сколько килограммов весит каждый из мушкетёров?
- 15.
-
Три охотника сварили кашу. Первый дал 2 кружки крупы, второй – одну, третий – ни одной, но он расплатился 5 патронами. Как должны поделить эти патроны первые два охотника?
- 16.
-
Расставьте на шахматной доске 32 коня так, чтобы каждый бил ровно двух других.
- 17.
-
Вифсла, Тофсла и Хемуль играли в снежки. Первый снежок бросил Тофсла. Затем в ответ на каждый попавший в него снежок Вифсла бросал 6 снежков, Хемуль — 5, а Тофсла — 4. Через некоторое время игра закончилась. Найдите, в кого сколько снежков попало, если мимо цели пролетели 13 снежков. (В себя самого снежками не кидаются и один снежок не может попасть в двоих.)
- 18.
-
Экологи запускают в пруд карпов. Сначала – одного, через час – ещё двух, через два часа – трёх и т.д. Браконьер Петя начинает лов рыбы спустя час после того как в пруд был запущен первый карп. В первый час своей рыбалки Петя ловит 1 карпа, во второй час – двух, в третий час – трёх и т.д. Сколько карпов останется в пруду спустя сутки после запуска в пруд первой рыбки?
- 19.
-
На окраску кубика 2x2x2 требуется 12 г краски. Сколько краски потребуется, чтобы окрасить кубик 6х6х6?
- 20.
-
Тилли, Вилли и Дилли участвовали в легкоатлетическом забеге. В какой-то момент времени оказалось, что они бегут рядом друг с другом, впереди них бежит половина участников забега и позади них - треть участников забега. Сколько спортсменов участвовало в забеге?
|