МАЛЫЙ МЕХМАТ МГУ

Кружок 7 класса

Руководитель Степан Львович Кузнецов
2011/2012 учебный год

Занятие 20 (17 марта 2012 года). Неравенство треугольника II

0.
а)
Муравей может ползать по всей обложке журнала, но только по обложке. Как найти кратчайший для муравья путь от некоторой точки на первой обложке до некоторой точки на последней обложке?
б)
Стекло машины закрыто не до конца. Гусенице надо проползти из точки A на этом стекле с внутренней стороны в точку B на этом стекле с внешней стороны. Помогите ей найти кратчайший путь.
в)
Красной Шапочке надо выйти из дома, дойти до шоссе, которое представляет собой прямую линию, подождать там развозчика пирожков, купить пирожок и отнести его бабушке, живущей в другом доме. Где Красная Шапочка должна выйти к шоссе, чтобы её путь оказался минимальным?
1.
В вершине A единичного квадрата ABCD сидит муравей. Ему надо добраться до точки C, где находится вход в муравейник. Точки A и C разделяет вертикальная стена, имеющая вид равнобедренного прямоугольного треугольника с гипотенузой BD. Найдите длину кратчайшего пути, который надо преодолеть муравью, чтобы попасть в муравейник.
2.
Две деревни находятся по разные стороны от реки, берега которой — параллельные прямые. В каком месте реки необходимо построить мост, перпендикулярный берегам, чтобы путь из одной деревни в другую был минимален?
3.
Полуостров представляет собой острый угол, внутри которого находится дом лесника. Как леснику, выйдя из дома, добраться до одного берега полуострова, затем до другого и вернуться домой, пройдя по самому короткому пути?}

* * *

4.
Отрезки AB и CD длины 1 пересекаются в точке O, причем ∠AOC = 60°. Докажите, что AC + BD ≥ 1.
5.
В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по одной вершине четырёхугольника). Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.

* * *

6.
Играют двое. В начале игры есть одна палочка. Первый игрок ломает эту палочку на две части. Далее игроки по очереди ломают на две части любую палочку из имеющихся к данному моменту. Если, сломав палочку, игрок может сложить из всех имеющихся палочек один или несколько отдельных треугольников (каждый — ровно из трёх палочек), то он выиграл. Кто из игроков (первый или второй) может обеспечить себе победу независимо от действий другого игрока?
7.
В выпуклом пятиугольнике ABCDE углы ABC и CDE равны по 90°, стороны BC, CD и AE равны по 1 и сумма сторон AB и DE равна 1. Докажите, что площадь пятиугольника равна 1.