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A One-Sentence Proof That Every Prime p =1 (mod 4)
Is a Sum of Two Squares
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The involution on the finite set S = {(x,y,z) € N*x2 + 4yz = p} defined by
(x+2z,z,y—x—1z) ifx<y—z
(x,9,2) » {2y —x,y,x—y+z) ify—z<x<2y
(x=2y,x—y+z,y) ifx>2y

has exactly one fixed poiht, so |S] is odd and the involution defined by (x, y,z) =
(x,z,y) also has a fixed point. O

This proof is a simplification of one due to Heath-Brown [1] (inspired, in turn, by
a proof given by Liouville). The verifications of the implicitly made assertions—that
S is finite and that the map is well-defined and involutory (i.e., equal to its own
inverse) and has exactly one fixed point—are immediate and have been left to the
reader. Only the last requires that p be a prime of the form 4k + 1, the fixed point
then being (1,1,%).

Note that the proof is not constructive: it does not give a method to actually find
the representation of p as a sum of two squares. A similar phenomenon occurs with
results in topology and analysis that are proved using fixed-point theorems. Indeed,
the basic principle we used: “The cardinalities of a finite set and of its fixed-point
set under any involution have the same parity,” is a combinatorial analogue and
special case of the corresponding topological result: “The Euler characteristics of a
topological space and of its fixed-point set under any continuous involution have
the same parity.”

For a discussion of constructive proofs of the two-squares theorem, see the
Editor’s Corner elsewhere in this issue.
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Inverse Functions and their Derivatives
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If the concept of inverse function is introduced correctly, the usual rule for its
derivative is visually so obvious, it barely needs a proof. The reason why the
standard, somewhat tedious proofs are given is that the inverse of a function f(x) is

144





