1.1. Докажите, что для любого натурального числа n имеет место следующее равенство: $\sum_{k=1}^{n} (2k-1) = 1+3+\ldots+(2n-1) = n^2$. В чём геометрический смысл этого соотношения?

Числа
$$T_n=\sum\limits_{k=1}^n k=1+2+\ldots+n=rac{n(n+1)}{2}$$
 называются m реугольными.

1.2. Докажите равенства и укажите их геометрический смысл:

a)
$$T_n + T_{n+1} = (n+1)^2$$
;

6)
$$T_{m+n} = T_n + T_m + mn$$
.

1.3. Обозначим \mathcal{X}_n количество точек в составленном из точек правильном шестиугольнике, одна сторона которого содержит n точек (на рисунке 1 показаны такие шестиугольники для n равного 1, 2 и 3). Такие числа называются $\mathit{zekcamu}$. Докажите следующие свойства этих чисел:

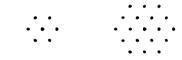
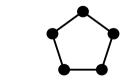


Рис. 1: Гексы

a)
$$\mathcal{X}_n = 6T_{n-1} + 1$$
; 6) $\mathcal{X}_1 + \mathcal{X}_2 + \ldots + \mathcal{X}_n = n^3$.

В чём геометрический смысл этих соотношений?

- 1.4. Суммируя выражение $k^5 (k-1)^5$, вычислите $\sum_{k=1}^n k^4$. Указание: $(k-1)^5 = k^5 5k^4 + 10k^3 10k^2 + 5k 1$.
- **1.5.** Пусть шары сложены в виде тетраэдра, у которого каждое ребро состоит из n шаров. Обозначим через \mathcal{Y}_n количество шаров в таком тетраэдре. Докажите следующие свойства тетраэдральных чисел:
- a) $\mathcal{Y}_n = \mathcal{Y}_{n-1} + T_n$;
- 6) $\mathcal{Y}_n = \frac{n(n+1)(n+2)}{6}$;
- B) $\mathcal{Y}_n=1\cdot n+\overset{6}{2}\cdot (n-1)+3\cdot (n-2)+\ldots+n\cdot 1$
- 1.6. Аналогично треугольным числам T_n можно определить m-угольные числам $P_{m,n}$ (на рисунке показаны примеры для $P_{5,1}, P_{5,2}, P_{5,3}$ и $P_{5,4}$).



- а) Чему равно $P_{m,n} P_{m,n-1}$?
- $\mathbf{6}$) Выразите $P_{m,n}$ через m и n.