Делимость

- 1. Существует ли число вида 11...11, кратное 123456789?
- 2. Для каждого из следующих подмножеств натурального ряда:
- убедитесь, что оно содержит 1 и замкнуто относительно умножения;
- опишите в нём все простые числа;
- выясните, верна ли в нём основная теорема арифметики об однозначном разложении на простые множители.
- а) Множество нечётных чисел; $\mathbf{6}$) множество степеней двойки 1, 2, 4, ...; $\mathbf{8}$) множество чисел, дающих остаток 1 при делении на 4; \mathbf{r}) множество степеней двойки, кроме двойки: 1, 4, 8, 16, ...
 - **3.** Сколько натуральных делителей у числа $11^{1001} \cdot 1001^{11}$?
 - **4.** Какие из следующих чисел простые: $6^{2020} 1$, $2^{2020} 1$, $2^{1001} 1$, $2^7 1$?
 - **5.** Пусть $2^n + 1$ простое число. Докажите, что n степень двойки.
 - **6.** Найдите все $n \in \mathbb{N}$, при которых $n^4 + 4$ простое число.
- 7. Докажите, что простых чисел вида а) 3k-1; б)* 3k+1; в) 4k-1; г)* 4k+1 бесконечно много.

Делимость

- 1. Существует ли число вида 11...11, кратное 123456789?
- **2.** Сколько натуральных делителей у чисел: а) 10^6 ; б) 1001; в) $11^{1001} \cdot 1001^{11}$?
- **3.** Какие из следующих чисел простые: $6^{2020} 1$, $2^{2020} 1$, $2^{1001} 1$, $2^7 1$?
- **4.** Пусть $2^n + 1$ простое число. Докажите, что n степень двойки.
- **5.** Найдите все $n \in \mathbb{N}$, при которых $n^4 + 4$ простое число.
- 6. а) Докажите, что простых чисел бесконечно много (теорема Евклида).
- б) Докажите, что простых чисел вида 3k-1 бесконечно много.